

Welcome to amtt’s documentation!

amtt stands for “Availability Modelling Translation Toolkit”. Its goal is to enable Availability Engineers to easily define their models in a predefined format and be able to translate them to multiple RAMI Software (targets).

Contents

	Releases

	Installation Guide

	Building from source
	Python version

	Requirements

	Installing the application

	Running the application

	Building an application bundle

Releases

The latest release can be found in the
 Releases
 section of the GitHub
 repository
.

Normally, each release is build for Windows and Linux. Some releases may also be built for MacOS, but if they aren’t you can always build by yourself, by downloading the release source code and following the Building from source guidelines.

Release packages (that is, archives with pre-built, ready to run executables) are in zip format. Once you have downloaded a release package, just extract it to your desired location. Then, in order to run the translator via the user interface:

	If you have downloaded the Windows archive, run amtt_win.exe.

	If you have downloaded the Linux archive, run amtt_linux.

	If you have downloaded the MacOS archive, run amtt_mac.

Installation Guide

If you download one of the amtt release bundles, there no need to install anything. The bundle consists of one executable file that can be run either via the user interface (by double clicking on the downloaded file), or from a command line (by specifying the --cli option).

However, if you prefer to build and install from source, please refer to Building from source.

Building from source

This section outlines the procedure to follow if you need to build a bundle of amtt (which can be useful if you want to distribute the application without having to build it in every machine).

Python version

amtt is written in Python and was developed with Python 3.5. It has been tested to work with Python 3.6 as well, although as of the time of writing this text, creating a bundle with Python 3.6+ is not supported. The reason is explained in the following note.

No matter which Python version you choose, you should always download the latest point release for that version. For example, as of the time of writing this text, the latest Python 3.5 version is 3.5.3 and that is what you would choose if you read this text on 13th April 2017.

Note: amtt uses PyInstaller in order to build standalone archives. While amtt should work with any Python 3.5+ version, PyInstaller does not usually support the latest Python version right away. Before proceeding, please check with the
 PyInstaller
 home page for the maximum supported Python version. If in doubt, it is recommended that you use Python 3.5 (either 32 or 64 bit).

Requirements

Download and install Python

	For Windows, download the
 Python Windows Installer
 (either 32 or 64 bit will work). Upon installing, make sure to check the “Add Python to PATH” option.

	For Linux, Python should be available via your package manager. You can also refer to the
 pyenv
 project, which allows you to install any Python version to any distribution locally (as well as the system meets the pyenv dependencies).

	For MacOS, you can install Python via the
 Python MacOS Installer
, via
 Homebrew
 or via the
 pyenv
 project.

Extra requirements for Windows

In order to build on Windows, you will also need “Microsoft Visual C++ 2010 Redistributable Package”. Some links are provided below for your convenience (if they don’t work, Google should do the trick).

Choose the appropriate version for your Python installation. If you are not sure, just install both:

	x86 (32-bit Python): https://www.microsoft.com/en-us/download/details.aspx?id=5555

	x64 (64-bit Python): https://www.microsoft.com/en-us/download/details.aspx?id=14632

Optional: Use a Python virtual environment

This step is optional, but highly recommended. A Python virtual environment allows you to create a completely isolated environment in which you can install Python packages. This approach avoids cluttering a Python installation with many packages, probably unnecessary for the system (e.g. the packages that this build procedure pulls and installs).

There are many ways to create a Python virtual environment, depending on what you use. For example,
 pyenv
 has build-in support for creating and managing virtual environments. Below are some generic instructions, based on the venv Python module included in the standard library (no need of any external tools).

	Choose where you want the virtual environment to be created. Let the path to that directory be /home/user/path/to/venv/directory. It is important that this is a local directory, for which you have read and write rights.

	Create the virtual environment:

python -m venv /home/user/path/to/venv/directory

The above command adds all the required executables (python, pip, etc.) in the bin directory within the virtual environment directory. From now on, whenever you need to execute python, pip or any other executable, you can execute /home/user/path/to/venv/directory/bin/python, /home/user/path/to/venv/directory/bin/pip, etc. respectively.

Apart from
 pyenv
, another tool that greatly simplifies virtual environment management is virtualenvwrapper. See
 virtualenvwrapper
 for installation and usage details (attention if using Windows: the installation procedure is different, check the aforementioned link).

Clone or download the amtt repository

The ammt repository is located in GitHub: https://github.com/errikos/amtt .

	You can clone the repository by using git:

git clone https://github.com/errikos/amtt.git

	Or, if you do not want to clone, you can download the master snapshot: https://github.com/errikos/amtt/archive/master.zip

Installing the application

After you have downloaded the source, you can start the installation process.

Change directory, or cd, to the directory containing the source code (you will first need to extract archive if you downloaded the master snapshot). Then, you have two options:

	via pip (recommended):

pip is a package manager for Python packages and is automatically installed if you install Python via the Windows/MacOS installers or the Homebrew/pyenv projects. For package manager based installations in Linux, you may need to install it manually.

Once inside the source directory, execute:

pip install .

	without pip, via distutils:

distutils are bundled in the standard Python distribution.

	To fetch the dependencies and build the application:

python setup.py build

	To install the application, after building:

python setup.py install

	In you encounter an error like the following:

error: The 'pyexcel' distribution was not found and is required by amtt

then execute the install command again:

python setup.py install

The above two commands will install the application in your local python distribution (the one that resembles to the executed python command) along with all the required dependencies. They will also install the application executables, which can then be called from the command line (see Running the application below for more details).

Running the application

There are two ways to run the application. The easier way is via the user interface. However, you can also run the application via the command line. The installation procedure described above installs both.

Open a command prompt (Windows) or a terminal (Linux/MacOS).

	To run the graphical user interface, execute amtt-gui.

	To run the command line interface, execute amtt.

Building an application bundle

If you want to distribute the application among many users, the easiest way is to create an application bundle, i.e. a standalone executable, that is ready-to-run on any machine.

This bundle will have no dependencies whatsoever and will run on a given machine, even if no Python version is installed on it.

To create an application bundle:

	Make sure you have followed the installation procedure in Installing the application.

	Install PyInstaller:

	via pip (easiest, trouble-free method):

pip install PyInstaller

	without pip:

	Download the latest PyInstaller package from PyPi: https://pypi.python.org/pypi/PyInstaller/

	Extract it, cd to the extracted directory and execute:

python setup.py install

	While in the project root folder (where setup.py resides), execute:

python setup.py build_standalone

After the process is complete, you will find the bundle in the dist directory.

Please note that the build process builds a bundle for the operating system you are currently using. It is not possible to cross-compile and create application bundles for other operating systems.

Therefore, you can only build for Linux from a Linux installation, for MacOS from a MacOS installation and for Windows from a Windows installation.

Index

 nav.xhtml

 Table of Contents

 		Welcome to amtt's documentation!

 		Releases

 		Installation Guide

 		Building from source

 		Python version

 		Requirements

 		Download and install Python

 		Extra requirements for Windows

 		Optional: Use a Python virtual environment

 		Clone or download the amtt repository

 		Installing the application

 		Running the application

 		Building an application bundle

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

